Notizen 187

¹H and ¹⁹F NMR Study of Ammonium Ion Motion in Ammonium Trifluorostannate (II)

Kiyofumi Hirokawa and Yoshihiro Furukawa Department of Chemistry, Faculty of Science, Nagoya University, Nagoya, Japan

Z. Naturforsch. **43a**, 187–188 (1988); received October 10, 1987

The temperature dependences of the second moment and spin-lattice relaxation time of $^1{\rm H}$ and $^{19}{\rm F}$ NMR were measured on ammonium trifluorostannate (II) NH₄SnF₃. It was found that the NH₄ ions having a C₃ symmetry in the crystal undergo overall reorientations with an activation energy of 22 kJ mol $^{-1}$.

Ammonium trifluorostannate (II) $\mathrm{NH_4SnF_3}$ forms trigonal crystals with the space group R $\overline{3}$ at room temperature [1, 2]. Both the nitrogen and tin atoms in isolated $\mathrm{NH_4^+}$ and $\mathrm{SnF_3^-}$ ions, respectively, are on the $\mathrm{C_3}$ symmetry axis of the crystal. One of the N – H bonds in an $\mathrm{NH_4^+}$ ion is on the $\mathrm{C_3}$ axis and directs to the center of a $\mathrm{SnF_3^-}$ trigonal pyramid, making a trifurcated hydrogen bond. The N ... F distances are 300 pm. The remaining three hydrogens of the $\mathrm{NH_4^+}$ ion are normally hydrogen-bonding with fluoride ions belonging to different $\mathrm{SnF_3^-}$ ions. The N ... F distances are 275 pm. Thus, the $\mathrm{NH_4^+}$ ion in $\mathrm{NH_4SnF_3}$ forms two kinds of very different hydrogen bonds. In order to study the motion of the $\mathrm{NH_4^+}$ ions forming such unique hydrogen bonds, we measured the second moments M_2 and spin-lattice relaxation times T_1 of $^1\mathrm{H}$ and $^{19}\mathrm{F}$ NMR of this complex.

Ammonium trifluorostannate (II) was crystallyzed from an aqueous solution of SnF₂ and a slight excess of NH₄HF₂ [2, 3]. The colorless crystals were filtered off, washed with methanol and dried over NaOH in a desiccator. NH₄SnF₃ thus obtained was identified by powder X-ray diffraction.

thus obtained was identified by powder X-ray diffraction. Continuous-wave ^1H and ^{19}F NMR spectra were recorded on a JEOL JNM-MW 40S spectrometer. ^1H and ^{19}F spin-lattice relaxation times T_1 were measured at 20 and 18.814 MHz (the external magnetic field is ca. 0.47 T for both nuclei), respectively, by using pulsed NMR spectrometers already described [4, 5]. The usual 180° -t- 90° pulse sequence was used for the determination of T_1 . Temperatures were determined by a copper-Constantan thermocouple within an accuracy of \pm 1 K for the T_1 measurements and of \pm 2 K for the M_2 measurements.

The second moments of ^{1}H and ^{19}F NMR absorptions ($M_{2\text{H}}$ and $M_{2\text{F}}$, respectively) were measured from 77 K to room temperature. At 77 K, $M_{2\text{H}}$ and $M_{2\text{F}}$ were 50×10^{-8} and 11×10^{-8} T², respectively. With increasing temperature, each M_{2} decreased in a temperature range 120-180 K, and reached a plateau value above 180 K. The plateau values of $M_{2\text{H}}$ and $M_{2\text{F}}$ were 4×10^{-8} and 7×10^{-8} T², respectively. The decrease of $M_{2\text{H}}$ is very large compared with that of

The decrease of $M_{2\rm H}$ is very large compared with that of $M_{2\rm F}$, suggesting the occurrence of isotropic reorientation of the NH₄⁺ ions. Therefore, the theoretical $M_{2\rm H}$ and $M_{2\rm F}$ were calculated for the models of rigid lattice and of isotropically

Reprint requests to Dr. Yoshihiro Furukawa, Department of Chemistry, Faculty of Science, Nagoya University, Chikusa, Nagoya 464, Japan.

reorienting NH $_{4}^{+}$ ions. Magnetic dipolar interactions between 1 H and 1 H, 1 H and 19 F, and 19 F and 19 F nuclei were taken into account in the M_{2} calculations. All interproton distances in an NH $_{4}^{+}$ ion were assumed to be 170 pm for the rigid lattice model, and for the reorienting NH $_{4}^{+}$ ion model the interionic contribution to M_{2} was estimated by placing four NH $_{4}^{+}$ ion protons at the nitrogen site. The results were $M_{2\rm H}=53.1\times10^{-8}$ and $M_{2\rm F}=12.5\times10^{-8}$ T $_{2}^{-}$ for the rigid lattice model and $M_{2\rm H}=2.7\times10^{-8}$ and $M_{2\rm F}=6.2\times10^{-8}$ T $_{2}^{-}$ for the reorienting NH $_{4}^{+}$ ion model. These calculated M_{2} values are in good agreement with the corresponding values observed at low and high temperatures, indicating that the NH $_{4}^{+}$ ions are rigidly fixed below 120 K and undergo isotropic reorientation above 180 K.

Figure 1 shows the temperature dependences of ^{1}H and ^{19}F T_{1} (T_{1H} and T_{1F} , respectively). A T_{1H} minimum of 4 ms and a T_{1F} minimum of 28 ms were located at 210 and 195 K, respectively. Below ca. 190 K, nonexponential decays of the magnetization recovery for the T_{1} measurements were observed for both nuclei. This nonexponentiality is assignable to the heteronuclear dipolar cross coupling between ^{1}H and ^{19}F nuclei [6–8]. In this case, the magnetization recovery curve was assumed to be the superimposition of two exponential decays, and a short (T_{1s}) and a long (T_{11}) component were manually determined as shown in Figure 1. Experimentally equal values of each component were obtained for both

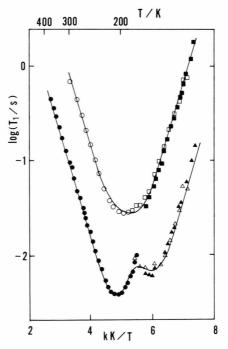


Fig. 1. Temperature dependences of spin-lattice relaxation times T_1 of ${}^1\mathrm{H}$ (\bullet , \blacksquare , and \blacktriangle) and ${}^{19}\mathrm{F}$ (\bigcirc , \square , and \triangle) NMR measured at 20 and 18.814 MHz, respectively, for NH₄SnF₃. Below ca. 190 K, nonexponential recovery of magnetization in the T_1 measurements was observed for both nuclei, yielding a long (\blacksquare and \square) and a short (\blacktriangle and \triangle) T_1 component.

0932-0784 / 88 / 0200-0187 \$ 01.30/0. - Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung "Keine Bearbeitung") beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.

188 Notizen

nuclei. A T_{1s} minimum of ca. 7 ms was observed near 165 K.

By referring the results of M_2 , the observed T_1 was analyzed by the model of the NH₄ ion reorientation. The relaxation rates (T_1^{-1}) of interacting ¹H and ¹⁹F nuclei in NH₄SnF₃ are the eigen values of the relaxation rate matrix [6–8]

$$\begin{pmatrix} R_{\rm HH} & R_{\rm HF} \\ R_{\rm FH} & R_{\rm FF} \end{pmatrix}. \tag{1}$$

The components of the relaxation matrix are given as

$$\begin{split} R_{\rm HH} &= (2/3) \, \gamma_{\rm H}^2 \, \Delta M_2 \, ({\rm H} - {\rm H}) \, f \, (\omega_{\rm H}, \tau) \\ &+ (1/2) \, \gamma_{\rm H}^2 \, \Delta M_2 \, ({\rm H} - {\rm F}) \, g \, (\omega_{\rm H}, \omega_{\rm F}, \tau) \,, \end{split} \tag{2 a}$$

$$R_{\rm HF} = (1/2) \gamma_{\rm H}^2 \Delta M_2 ({\rm H} - {\rm F}) g'(\omega_{\rm H}, \omega_{\rm F}, \tau),$$
 (2b)

$$\begin{split} R_{\mathrm{FF}} &= (1/2) \gamma_{\mathrm{F}}^2 \Delta M_2 (\mathrm{F} - \mathrm{H}) \, g \, (\omega_{\mathrm{F}}, \omega_{\mathrm{H}}, \tau), \\ &\approx (4/3) (1/2) \gamma_{\mathrm{H}}^2 \, \Delta M_2 \, (\mathrm{H} - \mathrm{F}) \, g \, (\omega_{\mathrm{H}}, \omega_{\mathrm{F}}, \tau), \ (2\,\mathrm{c}) \end{split}$$

$$\begin{split} R_{\rm FH} &= (1/2) \, \gamma_{\rm F}^2 \, \Delta M_2 \, ({\rm F-H}) \, g' \, (\omega_{\rm F}, \omega_{\rm H}, \tau) \\ &\approx (4/3) \, R_{\rm HF} \, . \end{split} \tag{2 d}$$

Here.

$$\begin{split} f\left(\omega_{I},\tau\right) &= \tau/(1+\omega_{I}^{2}\,\tau^{2}) + 4\,\tau/(1+4\,\omega_{I}^{2}\,\tau^{2}), \quad (3\,\mathrm{a}) \\ g\left(\omega_{I},\omega_{J},\tau\right) &= \tau/\left\{1+\left(\omega_{I}-\omega_{J}\right)^{2}\,\tau^{2}\right\} + 3\,\tau/\left(1+\omega_{I}^{2}\,\tau^{2}\right) \\ &+ 6\,\tau/\left\{1+\left(\omega_{I}+\omega_{J}\right)^{2}\,\tau^{2}\right\}, \quad (3\,\mathrm{b}) \end{split}$$

$$g'(\omega_I, \omega_J, \tau) = -\tau / \{1 + (\omega_I - \omega_J)^2 \tau^2\} + 6\tau / \{1 + (\omega_I + \omega_J)^2 \tau^2\}.$$
 (3c)

 $\Delta M_2(I-J)$ represents a reduction of the second moment of I spins caused by averaging out the dipolar interactions between I and J spins through the $\mathrm{NH_4^+}$ ion reorientations. γ_I and ω_I are the gyromagnetic ratio and Larmor frequency of I spins, respectively. τ stands for the correlation time of the

- G. Bergerhoff and H. Namgung, Acta Crystallogr. Sect. B 34, 699 (1878).
- [2] E. Acker, K. Recker, and S. Haussühl, J. Cryst. Growth 35, 165 (1976).
- [3] J. D. Donaldson and J. D. O'Donoghue, J. Chem. Soc. 1964, 271.
- [4] L. S. Prabhumirashi, R. Ikeda, and D. Nakamura, Ber. Bunsenges. Phys. Chem **85**, 1142 (1981).
- [5] S. Gima, Y. Furukawa, R. Ikeda, and D. Nakamura, J. Mol. Struct. 111, 189 (1983).

 NH_4^+ ion motion and the Arrhenius relation is usually assumed for τ :

$$\tau = \tau_0 \exp(E_a/RT). \tag{4}$$

By adjusting ΔM_2 (H – H), ΔM_2 (H – F), τ_0 and E_a to fit the calculated T_1 to the observed one, the motional parameters of the NH₄⁺ ions were determined: ΔM_2 (H – H) = 46 × 10⁻⁸ T², ΔM_2 (H – F) = 2.4 × 10⁻⁸ T², E_a = 22 kJmol⁻¹, and τ_0 = 2.0 × 10⁻¹⁴ s. The calculated T_1 curves are shown in Figure 1. The ΔM_2 (H – H) and ΔM_2 (H – F) values from the T_1 analysis are in agreement with 46 × 10⁻⁸ and 4.2 × 10⁻⁸ T², respectively, obtained from the M_2 calculations. Therefore, the relaxation process of both the ¹H and ¹⁹F nuclei in NH₄SnF₃ is assignable to the isotropic reorientation of the cations. The deep T_{1H} minimum is mainly due to the contribution of the homonuclear ¹H – ¹H dipolar interaction, and the T_{1s} minimum at 165 K originates from the heteronuclear ¹H – ¹⁹F dipolar coupling through the $\tau/\{1+(\omega_I-\omega_J)^2\tau^2\}$ term.

From the standpoint of the site symmetry at the NH_4^+ ion site alone it would be expected for the NH_4^+ ions to undergo a reorientation about the C_3 axis in preference to the overall reorientation. However, its possibility is experimentally excluded. This fact indicates that the three hydrogen bonds of the NH_4^+ ion out of the C_3 axis hinder the cation reorientation. In fact, Knop et al. showed from their infrared spectroscopic study that the hydrogen bond on the C_3 axis is much weaker than the remaining three hydrogen bonds [9]. The E_a value of 22 kJmol $^{-1}$ is much smaller than 39 kJmol $^{-1}$ for $\mathrm{NH}_4\mathrm{F}$, in which the NH_4^+ ion forms tetrahedrally four normal hydrogen bonds with an N ... F distance of 271 pm [10], and is much larger than 8.6 kJmol $^{-1}$ for cubic (NH_4)₂SiF $_6$, in which the NH_4^+ ion forms four trifurcated hydrogen bonds with an N ... F distance of 300 pm [7]. In $\mathrm{NH}_4\mathrm{SnF}_3$, the NH_4^+ ion forms three normal and a trifurcated hydrogen bond, and its E_a value is between the two limiting values mentioned above.

- [6] A. Abragam, The Principles of Nuclear Magnetism, Chapter 8, Oxford, London 1961.
- [7] R. Blinc and G. Lahajnar, J. Chem. Phys. **47**, 4146 (1967).
- [8] S. Albert and H. S. Gutowsky, J. Chem. Phys. 59, 3585 (1973).
- [9] O. Knop, W. J. Westerhaus, and M. Falk, Can. J. Chem. 58, 270 (1980).
- [10] I. Svare, G. Thorkildsen, and K. Otnes, J. Phys. C 12, 2177 (1979).